Collective skyrmion motion under the influence of an additional interfacial spin-transfer torque

2021 
Here we study the effect of an additional interfacial spin-transfer torque, as well as the well-established spin-orbit torque, on skyrmion collections - group of skyrmions dense enough that they are not isolated from one another - in ultrathin heavy metal / ferromagnetic multilayers, by comparing modelling with experimental results. Using a skyrmion collection with a range of skyrmion diameters, we study the dependence of the skyrmion Hall angle on diameter and velocity. As for an isolated skyrmion, a nearly-independent skyrmion Hall angle on skyrmion diameter for all skyrmion collection densities is reproduced by the model which includes interfacial spin-transfer torque. On the other hand, the skyrmion Hall angle change with velocity is significantly more abrupt compared to the isolated skyrmion case. This suggests that the effect of disorder on the collective skyrmion behavior is reduced compared to the isolated case. Our results further show the significance of the interfacial spin-transfer torque in ultrathin magnetic multilayers. Due to the good agreement with experiments, we conclude that the interfacial spin-transfer torque should be included in micromagnetic simulations for reproduction of experimental results.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    43
    References
    0
    Citations
    NaN
    KQI
    []