Stabilization of TuFF Material by Electrospinning of Low Areal Weight TPU Veil Material

2021 
The Tailored Universal Feedstock for Forming (TuFF) material is an aligned, discontinuous carbon fiber material with high fiber volume fraction up to 63% and mechanical performance equivalent to continuous fiber, unidirectional composites. The short fiber material allows at least 40% in-plane extension during processing enabling metal-like forming approaches simplifying composites manufacturing significantly. Traditionally, TuFF preforms are produced at areal weight (AW) of ~8 grams per square meter (gsm), stacked and impregnated with thermoset or thermoplastic polymer to create prepreg followed by curing/consolidation in an autoclave or stamp forming process resulting in high-performance structural parts. Here, the impregnated TuFF prepreg can be handled the same way as traditional continuous fiber prepreg. In contrast, to enable liquid composite molding (LCM) processes with TuFF material, the unimpregnated (dry) short fiber TuFF preforms must be stabilized for handling and preforming purposes. This paper details an electrospun veil approach as shown in Figure 1 to stabilize the individual TuFF sheets while maintaining the in-plane extensibility for complex geometry parts. Electrospun TPU fibers are applied onto the TuFF surface and then consolidated via a combination of heating and pressure, formingtrials were carried out using the stabilized preforms and composites werefabricated using LCM. Tensile tests show ~90-95% property retention versus theunstabilized baseline. The approach allows fabrication of stabilized TuFF fabricsfor the first time enabling the use of LCM processes for complex geometry parts.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    0
    Citations
    NaN
    KQI
    []