Shell Biosynthesis and Pigmentation as Revealed by the Expression of Tyrosinase and Tyrosinase-like Protein Genes in Pacific Oyster (Crassostrea gigas) with Different Shell Colors

2021 
The widely recognized color polymorphisms of molluscan shell have been appreciated for hundreds of years by collectors and scientists, while molecular mechanisms underlying shell pigmentation are still poorly understood. Tyrosinase is a key rate–limiting enzyme for the biosynthesis of melanin. Here, we performed an extensive multi-omics data mining and identified two tyrosinase genes, including tyrosinase and tyrosinase-like protein 2 (Tyr and Typ-2 respectively), in the Pacific oyster Crassostrea gigas, and investigated the expression patterns of tyrosinase during adults and embryogenesis in black and white shell color C. gigas. Tissue expression analysis showed that two tyrosinase genes were both specifically expressed in the mantle, and the expression levels of Tyr and Typ-2 in the edge mantle were significantly higher than that in the central mantle. Besides, Tyr and Typ-2 genes were black shell-specific compared with white shell oysters. In situ hybridization showed that strong signals for Tyr were detected in the inner surface of the outer fold, whereas positive signals for Typ-2 were mainly localized in the outer surface of the outer fold. In the embryos and larvae, the high expression of Tyr mRNA was detected in eyed-larvae, while Typ-2 mRNA was mainly expressed at the trochophore and early D-veliger. Furthermore, the tyrosinase activity in the edge mantle was significantly higher than that in the central mantle. These findings indicated that Tyr gene may be involved in shell pigmentation, and Typ-2 is more likely to play critical roles not only in the formation of shell prismatic layer but also in shell pigmentation. In particular, Typ-2 gene was likely to involve in the initial non-calcified shell of trochophores. The work provides valuable information for the molecular mechanism study of shell formation and pigmentation in C. gigas.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    52
    References
    1
    Citations
    NaN
    KQI
    []