Multi-messenger Probes of Inflationary Fluctuations and Primordial Black Holes

2020 
Next generation cosmic microwave background spectral distortion and pulsar timing array experiments have the potential to probe primordial fluctuations at small scales with remarkable sensitivity. We demonstrate the potential of these probes to either detect signatures of primordial black holes (PBHs) sourced from primordial overdensities within the standard thermal history of the universe over a 13-decade mass range ${\cal O}(0.1-10^{12})M_\odot$, or constrain their existence to a negligible abundance. Our conclusions are based only on global cosmological signals, and are robust under changes in i) the statistical properties of the primordial density fluctuations (whether Gaussian or non-Gaussian), ii) the merger and accretion history of the PBHs and assumptions about associated astrophysical processes, and iii) clustering statistics. Any positive detection of enhanced primordial fluctuations at small scales would have far-reaching implications from the content of dark matter to origin of BHs in the centers of galaxies, and to the field content of the inflation. On the other hand, their non-detection would also have important corollaries. For example, non-detection up to forecast sensitivities would tell us that PBHs larger than a fraction of a solar mass can constitute no more than a negligible fraction of dark matter. Moreover, non-detection will also rule out the scenario that PBHs generated by primordial overdensities could be the progenitors of super-massive black holes (SMBHs), of topical interest as there are only a few widely accepted proposals for the formation of SMBHs, an even more pressing question after the detection of active galactic nuclei over a billion solar masses at redshifts $z \geq 7$.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    153
    References
    17
    Citations
    NaN
    KQI
    []