Direct brain recordings reveal continuous encoding of structure in random stimuli

2021 
The brain excels at processing sensory input, even in rich or chaotic environments. Mounting evidence attributes this to the creation of sophisticated internal models of the environment that draw on statistical structures in the unfolding sensory input. Understanding how and where this modeling takes place is a core question in statistical learning. It is unknown how this modeling applies to random sensory signals. Here, we identify conditional relations, through transitional probabilities, as an implicit structure supporting the encoding of a random auditory stream. We evaluate this representation using intracranial electroencephalography recordings by applying information-theoretical principles to high-frequency activity (75-145 Hz). We demonstrate how the brain continuously encodes conditional relations between random stimuli in a network outside of the auditory system following a hierarchical organization including temporal, frontal and hippocampal regions. Our results highlight that hierarchically organized brain areas continuously attempt to order incoming information by maintaining a probabilistic representation of the sensory input, even under random stimuli presentation.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    98
    References
    0
    Citations
    NaN
    KQI
    []