Nicotine metabolite ratio: Comparison of the three urinary versions to the plasma version and nicotine clearance in three clinical studies.

2021 
Abstract Background Variation in CYP2A6 activity influences tobacco smoking behaviors and smoking-related health outcomes. Plasma Nicotine Metabolite Ratio (NMR) is a robust phenotypic biomarker of CYP2A6 activity and nicotine clearance. In urine, the NMR has been calculated as a ratio of free trans-3’-hydroxycotinine to free cotinine (NMRF/F), total trans-3’-hydroxycotinine to free cotinine (NMRT/F), or total trans-3’-hydroxycotinine to total cotinine (NMRT/T). We evaluated these three urinary NMR versions relative to plasma NMR and nicotine clearance and elucidated mechanisms of discrepancies among them. Methods Baseline plasma and urine biomarker data were available from two smoking cessation clinical trials and one nicotine pharmacokinetic study (total N = 768). NMRs were compared using Pearson correlations, linear regressions and ANOVA analyses. UGT2B10 and UGT2B17 were genotyped. Results Urinary NMRT/F was the most highly related to plasma NMR (R2 = 0.70, P urinary NMRT/F > NMRF/F > NMRT/T (R2 = 0.41 > 0.37 > 0.35 > 0.25 respectively). Conclusion Urinary NMRT/F followed by NMRF/F are the best urinary alternatives to plasma NMR or nicotine clearance. NMRT/T has the least utility as it is influenced substantially by variation in cotinine glucuronidation. Impact This work highlighted the variation in urinary NMRs, and identified mechanisms for disparities among them, which facilitates their use in predicting smoking-related outcomes.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    42
    References
    0
    Citations
    NaN
    KQI
    []