14.46% efficiency small molecule organic photovoltaics enabled by the well trade-off between phase separation and photon harvesting

2020 
Abstract Small molecule organic photovoltaics (SMPVs) were prepared by utilizing liquid crystalline donor material BTR-Cl and two similar optical bandgap non-fullerene acceptor materials BTP-BO-4F and Y6. The BTP-BO-4F and Y6 have the similar optical bandgap and different absorption coefficients. The corresponding binary SMPVs exhibit different short circuit current density (JSC) (20.38 vs. 23.24 mA cm-2), and fill factor (FF) (70.77% vs. 67.21%). A 14.46% power conversion efficiency (PCE) is acquired in ternary SMPVs with 30 wt% Y6, companied with a JSC of 24.17 mA cm-2, a FF of 68.78% and an open circuit voltage (VOC) of 0.87 V. The improvement on PCE of ternary SMPVs should originate from the well trade-off between phase separation and photon harvesting of ternary active layers by incorporating 30 wt% Y6 in acceptors. This work may deliver insight onto the improved performance of SMPVs by superposing the superiorities of binary SMPVs with similar optical bandgap acceptors into one ternary cell.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    59
    References
    53
    Citations
    NaN
    KQI
    []