Chlamydomonas angulosa (Green Alga) and Nostoc commune (Blue-Green Alga) Microalgae-Cellulose Composite Aerogel Beads: Manufacture, Physicochemical Characterization, and Cd (II) Adsorption

2018 
This study presents composite aerogel beads prepared by mixing dissolved cellulose with Chlamydomonas angulosa and Nostoc commune cells, respectively, at 0.1, 0.3, and 0.5% (w/w). The manufactured composites (termed regenerated cellulose (RC)), with C. angulosa (RCCA-(1, 3, and 5)), and with N. commune (RCNC-(1, 3, and 5)) were analyzed. Both RCCA-5 and RCNC-5 showed the high specific surface area to be about 261.3 and 332.8 m2·g−1. In the microstructure analysis, network structures were observed in the cross-sections of RC, RCCA-5, and RCNC-5. The pyrolysis temperature of the RCCA-5 and RCNC-5 composite aerogel beads was rapidly increased about 250 °C during the mixing of cellulose with C. angulosa and N. commune. The chemical analysis of RC, RCCA-5, and RCNC-5 showed peaks corresponding to various functional groups, such as amide, carboxyl, and hydroxyl groups from protein, lipid, and carbohydrate. RCNC-5 at pH 6 demonstrated highest Cd2+ removal rate about 90.3%, 82.1%, and 63.1% at 10, 25, and 50 ppm Cd2+, respectively. At pH 6, Cd2+ adsorption rates per unit weight of the RCNC-5 were about 0.9025, 2.0514, and 3.1547 mg/g at 10, 25, and 50 ppm, respectively. The peaks assigned to the amide, carboxyl, and hydroxyl groups in RCCA-5, RCNC-5, and RC were shifted or disappeared immediately after adsorption of Cd2+. The specific surface area, total pore volume, and mean pore diameter of composites was decreased due to adsorption of Cd2+ on the developed materials. As can be seen in the X-ray powder diffraction (XRD) spectrum, significant changes in the molecular structure of the composite aerogel beads were not observed even after adsorption of Cd2+.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    61
    References
    5
    Citations
    NaN
    KQI
    []