Structure-reactivity relationships in fuel stability: Experimental and kinetic modeling study of isoparaffin autoxidation

2018 
Liquid phase stability is a major concern in the transportation and the energy field where fuels, lubricants and additives have to be stable from their production site to their application (engine, combustors). Although alkanes are major constituents of commercial fuels and well-documented solvents, their respective reactivities and selectivities in autoxida-tion are poorly understood. This experimental and modeling study aims at (i) enhancing the current knowledge on alkane autoxidation and (ii) reviewing and correcting the previously established structure reactivity relationships in alkane autox-idation. Experimentally, this study investigates the influence of branching [0-3] and temperature [373-433 K] on the autoxidation of alkanes using four octane isomers: n-octane (C8), 2-methylheptane (MH), 2,5-dimethylhexane (DMH) and the 2,2,4-trimethylpentane(TMP). Induction Period (IP) and qualitative species identification are used to characterize the au-toxidation processes of alkanes. The present study also...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    44
    References
    18
    Citations
    NaN
    KQI
    []