Enhanced Fe-Centered Redox Flexibility in Fe–Ti Heterobimetallic Complexes

2019 
Previously, we reported the synthesis of Ti[N(o-(NCH2P(iPr)2)C6H4)3] and the Fe–Ti complex, FeTi[N(o-(NCH2P(iPr)2)C6H4)3], abbreviated as TiL (1), and FeTiL (2), respectively. Herein, we describe the synthesis and characterization of the complete redox families of the monometallic Ti and Fe–Ti compounds. Cyclic voltammetry studies on FeTiL reveal both reduction and oxidation processes at −2.16 and −1.36 V (versus Fc/Fc+), respectively. Two isostructural redox members, [FeTiL]+ and [FeTiL]− (2ox and 2red, respectively) were synthesized and characterized, along with BrFeTiL (2-Br) and the monometallic [TiL]+ complex (1ox). The solid-state structures of the [FeTiL]+/0/– series feature short metal–metal bonds, ranging from 1.94–2.38 A, which are all shorter than the sum of the Ti and Fe single-bond metallic radii (cf. 2.49 A). To elucidate the bonding and electronic structures, the complexes were characterized with a host of spectroscopic methods, including NMR, EPR, and 57Fe Mossbauer, as well as Ti and Fe K...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    113
    References
    16
    Citations
    NaN
    KQI
    []