The neuronal circuit between nociceptin/orphanin FQ and hypocretins/orexins coordinately modulates stress-induced analgesia and anxiety-related behavior.

2015 
Abstract The neuropeptide nociceptin/orphanin FQ (N/OFQ), acting on its receptors (NOP), modulates a variety of biological functions and neurobehavior including nociception, stress responses, water and food-intake, locomotor activity, and spatial attention. N/OFQ is conventionally regarded as an “antiopiate” peptide in the brain because central administration of N/OFQ attenuates stress-induced analgesia (SIA) and produces anxiolytic effects. However, naloxone-irreversible SIA and anxiolytic action are unlikely to be mediated by the opiate system. Both N/OFQ and NOP receptors are expressed most abundantly in the hypothalamus, where two other neuropeptides, the hypocretins/orexins (Hcrts), are exclusively synthesized in the lateral hypothalamic area. N/OFQ and Hcrt regulate most cellular physiological responses in opposite directions (e.g., ion channel modulation and second messenger coupling), and produce differential modulations for almost all neurobehavior assessed, including sleep/wake, locomotion, and rewarding behaviors. This chapter focuses on recent studies that provide evidence at a neuroanatomical level showing that a local neuronal circuit linking N/OFQ to Hcrt neurons exists. Functionally, N/OFQ depresses Hcrt neuronal activity at the cellular level, and modulates stress responses, especially SIA and anxiety-related behavior in the whole organism. N/OFQ exerts its attenuation of SIA and anxiolytic action on fear-induced anxiety through direct modulation of Hcrt neuronal activity. The information obtained from these studies has provided insights into how interaction between the Hcrt and N/OFQ systems positively and negatively modulates the complex and integrated stress responses.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    88
    References
    3
    Citations
    NaN
    KQI
    []