Real- Time Hyperspectral Stereo Processing for the Generation of 3D Depth Information

2018 
We present a local stereo matching method for hyperspectral camera data, allowing multiple usage of camera hardware and imaging data such as for object classification or spectral analysis and multichannel input to the correspondence problem. The matching process combines correlation-based similarity measures for pixel windows utilizing all 16 spectral channels followed by a consistency check for disparity selection. We evaluate stereo-processing methods focusing on effectiveness and runtime of the processing on a CPU and analyze parallelization possibilities. Based on the results of the evaluation on the CPU, we implement the optimized stereo matching for images with 16 channels on a graphics processing unit (GPU) utilizing the Compute Unified Device Architecture (CUDA). The parallel processing of the calculation steps to obtain the disparity image on the GPU achieves more than $27\times$ speed up, resulting in calculation and post-processing of hyperspectral images with 8 – 13 Hz, depending on the selection of maximum disparity. The 3D reconstruction achieves a mean square error of 0.0267 m 2 in distance measurements from 5 – 10 m.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    21
    References
    4
    Citations
    NaN
    KQI
    []