RRTX: Asymptotically optimal single-query sampling-based motion planning with quick replanning

2016 
Dynamic environments have obstacles that unpredictably appear, disappear, or move. We present the first sampling-based replanning algorithm that is asymptotically optimal and single-query (designed for situation in which a priori offline computation is unavailable). Our algorithm, RRTX, refines and repairs the same search-graph over the entire duration of navigation (in contrast to previous single-query replanning algorithms that prune and then regrow some or all of the search-tree). Whenever obstacles change and/or the robot moves, a graph rewiring cascade quickly remodels the existing search-graph and repairs its shortest-path-to-goal sub-tree to reflect the new information. Both graph and tree are built directly in the robot’s state-space; thus, the resulting plan(s) respect the kinematics of the robot and continue to improve during navigation. RRTX is probabilistically complete and makes no distinction between local and global planning, yet it reacts quickly enough for real-time high-speed navigation ...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    43
    References
    88
    Citations
    NaN
    KQI
    []