Bottom-up-then-up-down Route for Multi-level Construction of Hierarchical Bi2S3 Superstructures with Magnetism Alteration.

2015 
A bottom-up-then-up-down route was proposed to construct multi-level Bi2S3 hierarchical architectures assembled by two-dimensional (2D) Bi2S3 sheet-like networks. BiOCOOH hollow spheres and flower-like structures, which are both assembled by 2D BiOCOOH nanosheets, were prepared first by a “bottom-up” route through a “quasi-emulsion” mechanism. Then the BiOCOOH hierarchical structures were transferred to hierarchical Bi2S3 architectures through an “up-down” route by an ion exchange method. The obtained Bi2S3 nanostructures remain hollow-spherical and flower-like structures of the precursors but the constructing blocks are changed to 2D sheet-like networks interweaving by Bi2S3 nanowires. The close matching of crystal lattices between Bi2S3 and BiOCOOH was believed to be the key reason for the topotactic transformation from BiOCOOH nanosheets to 2D Bi2S3 sheet-like nanowire networks. Magnetism studies reveal that unlike diamagnetism of comparative Bi2S3 nanostructures, the obtained multi-level Bi2S3 structures display S-type hysteresis and ferromagnetism at low field which might result from ordered structure of 2D networks.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    26
    References
    14
    Citations
    NaN
    KQI
    []