Estimation and Inference for Generalized Geoadditive Models

2019 
Estimation and Inference for Generalized Geoadditive Models In many application areas, data are collected on a count or binary response with spatial covariate information. In this paper, we introduce a new class of generalized geoadditive models (GGAMs) for spatial data distributed over complex domains. Through a link function, the proposed GGAM assumes that the mean of the discrete response variable depends on additive univariate functions of explanatory variables and a bivariate function to adjust for the spatial effect. We propose a two-stage approach for estimating and making inferences of the components in the GGAM. In the first stage, the univariate components and the geographical component in the model are approximated via univariate polynomial splines and bivariate penalized splines over triangulation, respectively. In the second stage, local polynomial smoothing is applied to the cleaned univariate data to average out the variation of the first-stage estimators. We investigate the consistency of ...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    52
    References
    16
    Citations
    NaN
    KQI
    []