Design and theoretical characterization of high speed metasurface modulators based on electro-optic polymer

2021 
Metasurfaces have attracted extraordinary interest in achieving novel, ultrathin and compact photonic devices. To date, however, the realization of electrically tunable high-speed metasurfaces remains a great challenge. In this work, we present an electro-optic (EO) polymer/silicon hybrid metasurface modulator with an estimated 3dB modulation bandwidth up to 118 GHz. The specially designed metasurface utilizes a broken in-plane inversion symmetry structure to generate a high-Q resonance. The high-Q property enhances the EO modulation effect, so that a 16 dB extinction ratio is theoretically verified under a driving voltage Vp-p of 4V. The pulse modulation results in an ultra-fast single-lane data rates up to 300 Gbps driven by a low RF power. The presented modulator should be applicable for high-speed and low-energy intelligent tunable metasurface, space optical communication and so on.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    52
    References
    0
    Citations
    NaN
    KQI
    []