A modeling framework for second law analysis of low-temperature combustion engines:

2014 
Low-temperature combustion has shown the potential to provide solutions for future clean and efficient powertrain systems. Traditional approaches using the first law of thermodynamics have been established for describing energy flows within engine systems and comparing losses between low-temperature and traditional combustion modes. An augmented approach, using the second law of thermodynamics, can be utilized to gain insight into the exergy flows within the system and thus identify areas of irreversibilities and inefficiencies. The present article aims at introducing the required framework for the second law analysis of low-temperature combustion concepts and demonstrating its application to boosted homogeneous charge compression ignition engines. The framework consists of a combination of the first law and second law expressions combined with the University of Michigan homogeneous charge compression ignition combustion model and was applied on a modeled light-duty four-cylinder boosted homogeneous charg...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    29
    References
    18
    Citations
    NaN
    KQI
    []