Solar Filament Longitudinal Oscillations along a Magnetic Field Tube with Two Dips

2017 
The large-amplitude longitudinal oscillations of solar filaments have been observed and explored for more than ten years. Previous studies are mainly based on the one-dimensional rigid flux tube model with a single magnetic dip. However, it is noticed that there might be two magnetic dips, and hence two threads, along one magnetic field line. Following the previous work, we intend to investigate the kinematics of the filament longitudinal oscillations when two threads are magnetically connected, which is done by solving one-dimensional radiative hydrodynamic equations with the numerical code MPI-AMRVAC. Two different types of perturbations are considered, and the difference from previous works resulting from the filament thread-thread interaction is investigated. We find that even with the inclusion of the thread-thread interaction, the oscillation period is modified weakly, by at most 20% compared to the traditional pendulum model with one thread. However, the damping timescale is significantly affected by the thread-thread interaction. Hence, we should take it into account when applying the consistent seismology to the filaments where two threads are magnetically connected.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    47
    References
    27
    Citations
    NaN
    KQI
    []