Cytoskeleton assembly at endothelial cell–cell contacts is regulated by αII-spectrin–VASP complexes

2008 
Directed cortical actin assembly is the driving force for intercellular adhesion. Regulated by phosphorylation, vasodilator-stimulated phosphoprotein (VASP) participates in actin fiber formation. We screened for endothelial proteins, which bind to VASP, dependent on its phosphorylation status. Differential proteomics identified αII-spectrin as such a VASP-interacting protein. αII-Spectrin binds to the VASP triple GP5-motif via its SH3 domain. cAMP-dependent protein kinase–mediated VASP phosphorylation at Ser157 inhibits αII-spectrin–VASP binding. VASP is dephosphorylated upon formation of cell–cell contacts and in confluent, but not in sparse cells, αII-spectrin colocalizes with nonphosphorylated VASP at cell–cell junctions. Ectopic expression of the αII-spectrin SH3 domain at cell–cell contacts translocates VASP, initiates cortical actin cytoskeleton formation, stabilizes cell–cell contacts, and decreases endothelial permeability. Conversely, the permeability of VASP-deficient endothelial cells (ECs) and microvessels of VASP-null mice increases. Reconstitution of VASP-deficient ECs rescues barrier function, whereas αII-spectrin binding-deficient VASP mutants fail to restore elevated permeability. We propose that αII-spectrin–VASP complexes regulate cortical actin cytoskeleton assembly with implications for vascular permeability.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    114
    References
    107
    Citations
    NaN
    KQI
    []