2D-modelling of metal-Si emitter interface assuming Schottky or Ohmic contact

2014 
Abstract In this study we investigate, using a two dimensional simulation tool, the characteristics of the metal-Si emitter interface of screen printed and firing through contacts. In the model we assumed that the metal contact to n + or p + emitters is either Ohmic or Schottky and the dominant current conduction mechanism flow is directly through Ag-crystallite. The simulation results were then compared with the experimental data for the contact resistance (ρc) and fill factor (FF) of p-type cells with an n + phosphorous diffused emitter and n-type cells with a p + boron diffused emitter. The emitters of p-type and n-type cells were metalized using an Ag paste or, in case of p + doped emitters, by an AgAl paste. From the modeling of Si-emitters contacted by a screen printed Ag paste, a Schottky contact, assuming literature value for Ag work function, agrees with the experimental IV data for n + emitters, but does not agree for the p + emitters. Assuming only a Schottky contact at metal-p + emitter interface, the model fails to estimate simultaneously VOC and FF of the cells contacted by an Ag paste. Thus, the current transport mechanism at Ag- p + emitter interface may not be dominated by direct metal-Si contact through Ag-crystallites imprints but, possibly, by tunneling through a thin interface glass layer that resulted (in this case) in high contact resistance as observed experimentally. Therefore modeling Ag-p + emitter interface using an Ohmic contact with a high contact resistance agrees better with the experimental IV data.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    12
    References
    0
    Citations
    NaN
    KQI
    []