Characteristics of multiprocessing MCNP5 on small personal computer clusters

2006 
The feasibility and efficiency of performing MCNP5 calculations with a small, heterogeneous computing cluster built from Microsoft® WindowsTM personal computers (PC) are explored. The performance increases that may be expected with such clusters are estimated for cases that typify general radiation-shielding calculations. Our results show that the speed increase from additional slave PCs is nearly linear up to 10 processors. Guidance is given as to the specific advantages of changing various parameters present in the system. Implementing load balancing, and reducing the overhead from the MCNP rendezvous mechanism add to heterogeneous cluster efficiency. Hyper-threading technology and matching the total number of slave processes to the total number of logical processors also yield modest speed increases in the range below 7 processors. Because of the ease of acquisition of heterogeneous desktop computers, and the peak in efficiency at the level of a few physical processors, a strong case is made for the use of small clusters as a tool for producing MCNP5 calculations rapidly, and detailed instructions for constructing such clusters are provided.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    6
    References
    2
    Citations
    NaN
    KQI
    []