Hydrogen desorption and cracking associated with martensitic transformation in Fe-Cr-Ni-Based austenitic steels with different carbon contents

2017 
Abstract The hydrogen embrittlement behavior of Fe-19Cr-8Ni-0.05C and Fe-19Cr-8Ni-0.14C metastable austenitic steels was investigated using tensile tests under hydrogen-charging, cryogenic thermal desorption spectroscopy, and in situ deformation experiments. Coupled with post-mortem microstructure characterization, the cracking paths were clarified to be transgranular along {110} α and {100} α in the Fe-19Cr-8Ni-0.05C steel and {100} α in the Fe-19Cr-8Ni-0.14C steel. Intergranular cracking also occurred in the Fe-19Cr-8Ni-0.05C steel when α′-martensite thoroughly covered the grain boundaries. Occurrence of the transgranular and intergranular hydrogen-assisted cracking in the steels is assisted by (1) an increase in the hydrogen-affected zone associated with presence of thermally induced α′-martensite, and (2) an increase in the local mobility of hydrogen that occurs with the deformation-induced α′-martensitic transformation. Additionally, (3) the transgranular hydrogen-assisted cracking is assisted by the intersection of deformation bands driven by the maximum Schmid factor and the stress concentration at the crack tip.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    33
    References
    19
    Citations
    NaN
    KQI
    []