Robust Fixed-Order Controller Design with Common Lyapunov Strictly Positive Realness Characterization.

2020 
This paper investigates the design of a robust fixed-order controller for a polytopic system with interval uncertainties, with the aim that the closed-loop stability is appropriately ensured and the performance specifications on sensitivity shaping are conformed in a specific finite frequency range. Utilizing the notion of common Lyapunov strictly positive realness (CL-SPRness), the equivalence between strictly positive realness (SPRness) and strictly bounded realness (SBRness) is elegantly established; and then the specifications on robust stability and performance are transformed into the SPRness of newly constructed systems and further characterized in the framework of linear matrix inequality (LMI) conditions. Compared with the traditional robust controller synthesis approaches, the proposed methodology here avoids the tedious yet mandatory evaluations of the specifications on all vertices of the polytopic system; only a one-time checking of matrix existence is needed exclusively, and thus the typically heavy computational burden involved (in such robust controller design problems) is considerably alleviated. Moreover, it is noteworthy that the proposed methodology additionally provides essential necessary and sufficient conditions for this robust controller design with the consideration of a prescribed finite frequency range; and therefore significantly less conservatism is attained in the system performance.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    22
    References
    1
    Citations
    NaN
    KQI
    []