Towards determining the number of observable supermassive black hole shadows

2021 
We present estimates for the number of shadow-resolved supermassive black hole (SMBH) systems that can be detected using radio interferometers, as a function of angular resolution, flux density sensitivity, and observing frequency. Accounting for the distribution of SMBHs across mass, redshift, and accretion rate, we use a new semi-analytic spectral energy distribution model to derive the number of SMBHs with detectable and optically thin horizon-scale emission. We demonstrate that in excess of a million SMBH shadows meeting these criteria are potentially accessible to interferometric observations with sufficient angular resolution and sensitivity. We then further decompose the shadow source counts into the number of black holes for which we could expect to observe the first- and second-order lensed photon rings. Our model predicts that with modest improvements to sensitivity, as many as $\sim$5 additional horizon-resolved sources should become accessible to the current Event Horizon Telescope. More generally, our results can help guide enhancements of current arrays and specifications for future interferometric experiments that aim to spatially resolve a large population of SMBH shadows or higher-order photon rings.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    2
    References
    1
    Citations
    NaN
    KQI
    []