A comparative study of the spectral, fluorometric properties and photostability of natural curcumin, iron- and boron- complexed curcumin

2017 
Abstract Curcumin is a yellow phenolic compound with a wide range of reported biological effects. However, two main obstacles hinder the use of curcumin therapeutically, namely its poor bioavailability and photostability. We have synthesized two curcumin complexes, the first a boron curcumin complex (B-Cur 2 ) and the second an iron (Fe-Cur 3 ) complex of curcumin. Both derivatives showed high fluorescence efficiency (quantum yield) and greater photostability in solution. The improved photostability could be attributed to the coordination structures and the removal of β-diketone group from curcumin. The fluorescence and ultra violet/visible absorption spectra of curcumin, B-Cur 2 and Fe-Cur 3 all have a similar spectral pattern when dissolved in the same organic solvent. However, a shift towards a lower wavelength was observed when moving from polar to non-polar solvents, possibly due to differences in solvent polarity. A plot of Stokes' shift vs the orientation polarity parameter (Δf) or vs the solvent polarity parameter (E T 30) showed an improved correlation between the solvent polarity parameter than with the orientation polarity parameter and indicating that the red shift observed could be due to hydrogen-bonding between the solvent molecules. A similar association was obtained when Stokes' shift was replaced by maximum synchronous fluorescence. Both B-Cur 2 and Fe-Cur 3 had larger quantum yields than curcumin, suggesting they may be good candidates for medical imaging and in vitro studies.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    36
    References
    11
    Citations
    NaN
    KQI
    []