Fast functional annotation of metagenomic shotgun data by DNA alignment to a microbial gene catalog

2017 
Background: Metagenomic shotgun sequencing is becoming increasingly popular to study microbes associated with the human body and in environmental samples. A key goal of shotgun metagenomic sequencing is to identify gene functions and metabolic pathways that differ between samples or conditions. However, current methods to identify function in the large number of reads in a highthroughput sequence data file rely on the computationally intensive and low stringency approach of mapping each read to a generic database of proteins or reference microbial genomes. Results: We have developed an alternative analysis approach for shotgun metagenomic sequence data utilizing Bowtie2 DNA-DNA alignment of the reads to a database of well annotated genes compiled from human microbiome data. This method is rapid, and provides high stringency matches (>90% DNA sequence identity) of shotgun metagenomics reads to genes with annotated functions. We demonstrate the use of this method with synthetic data, Human Microbiome Project shotgun metagenomic data sets, and data from a study of liver disease. Differentially abundant KEGG gene functions can be detected in these experiments. Conclusions: Functional annotation of metagenomic shotgun sequence reads can be accomplished by rapid DNA-DNA matching to a custom database of microbial sequences using the Bowtie2 sequence alignment tool. This method can be used for a variety of microbiome studies and allows functional analysis which is otherwise computationally demanding. This rapid annotation method is freely available as a Galaxy workflow within a Docker image.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    21
    References
    1
    Citations
    NaN
    KQI
    []