Carbon Dioxide Footprint and Its Impacts: A Case of Academic Buildings

2021 
Carbon emissions have been considered a major reason behind climate change and global warming. Various studies report that rapid urbanization and the changing demands of 21st century life have resulted in higher carbon emissions. This study aims to examine the carbon footprints in an academic building to observe the carbon dioxide (CO2) levels at crucial landmarks and offices. A sensor-based automated system was designed and implemented for the collection of CO2 concentrations at selected locations. In the final stage, a CO2 footprint map was generated to highlight the vulnerable areas of CO2 in the academic building. It was concluded that offices have higher CO2 concentrations at both intervals (morning and afternoon), followed by the laboratory, corridors, and praying area. The CO2 concentration did not exceed 500 ppm at any location. Thus, all locations other than offices had normal CO2 concentration levels. Similarly, the humidity level was also satisfactory. The average humidity level was below 50%, which is below the permissible value of 65%. The recommended range for temperature values as per ASHRAE standards is 22.5 °C to 25.5 °C, except for prayer places. It was concluded that the selected academic institute is providing a good environment to the users of the building, but that may change once the academic institute becomes fully functional after COVID-19. This study assists the stakeholders in making guidelines and necessary actions to reduce CO2 concentration in academic buildings, as it is expected to rise once the human load increases in the next academic year. The suggested approach can be used in any other country and the results will vary based on the building type, building energy type, and building ventilation design.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    28
    References
    0
    Citations
    NaN
    KQI
    []