Neurochemical differentiation of functionally distinct populations of autonomic neurons

2001 
The coeliac ganglion of guinea pigs displays a unique topographical arrangement of neurochemically and functionally distinct populations of sympathetic neurons. The authors used multiple-labeling immunohistochemistry to investigate the neurochemical differentiation of these neurons during embryonic and fetal development. Sympathoadrenal precursors, located on either side of the abdominal aorta, were intensely immunoreactive for tyrosine hydroxylase (TH-IR), neurofilament, and the human natural killer 1 antibody at midembryonic stages (Carnegie stages 16–19). During late embryonic stages (stages 20–23), a single bilobed ganglion had formed. At this time, neuropeptide Y immunoreactivity (NPY-IR) was widely expressed in sympathetic neurons (with moderate TH-IR) and chromaffin cells (with intense TH-IR). The onset of somatostatin (Som-IR) expression followed that of NPY-IR and was restricted to sympathetic neurons. However, at late embryonic stages, most TH-IR neurons with Som-IR also expressed NPY-IR (a combination of peptides not found in the mature coeliac ganglion). Between late embryonic stages and the end of the early fetal period, there was a significant increase in the proportion of neurons in lateral regions that had both NPY-IR and TH-IR. At the same time, there was an increase in the proportion of neurons in medial regions that had both Som-IR and TH-IR. Neurons expressing both Som-IR and TH-IR were rarely observed in lateral regions of the coeliac ganglion. Thus, a clear topography within the coeliac ganglion is established during late embryonic and early fetal stages of development and reflects that found in the mature animal by the end of the early fetal period. J. Comp. Neurol. 429:419–435, 2001. © 2000 Wiley-Liss, Inc.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    54
    References
    24
    Citations
    NaN
    KQI
    []