Dynamics around the Site Percolation Threshold on High-Dimensional Hypercubic Lattices

2019 
Recent advances on the glass problem motivate reexamining classical models of percolation. Here, we consider the displacement of an ant in a labyrinth near the percolation threshold on cubic lattices both below and above the upper critical dimension of simple percolation, d_u=6. Using theory and simulations, we consider the scaling regime part, and obtain that both caging and subdiffusion scale logarithmically for d >= d_u. The theoretical derivation considers Bethe lattices with generalized connectivity and a random graph model, and employs a scaling analysis to confirm that logarithmic scalings should persist in the infinite dimension limit. The computational validation employs accelerated random walk simulations with a transfer-matrix description of diffusion to evaluate directly the dynamical critical exponents below d_u as well as their logarithmic scaling above d_u. Our numerical results improve various earlier estimates and are fully consistent with our theoretical predictions.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    37
    References
    4
    Citations
    NaN
    KQI
    []