The Great Markarian 421 Flare of February 2010: Multiwavelength variability and correlation studies

2020 
We report on variability and correlation studies using multiwavelength observations of the blazar Mrk 421 during the month of February, 2010 when an extraordinary flare reaching a level of $\sim$27~Crab Units above 1~TeV was measured in very-high-energy (VHE) $\gamma$-rays with the VERITAS observatory. This is the highest flux state for Mrk 421 ever observed in VHE $\gamma$-rays. Data are analyzed from a coordinated campaign across multiple instruments including VHE $\gamma$-ray (VERITAS, MAGIC), high-energy (HE) $\gamma$-ray (Fermi-LAT), X-ray (Swift}, RXTE, MAXI), optical (including the GASP-WEBT collaboration and polarization data) and radio (Metsahovi, OVRO, UMRAO). Light curves are produced spanning multiple days before and after the peak of the VHE flare, including over several flare `decline' epochs. The main flare statistics allow 2-minute time bins to be constructed in both the VHE and optical bands enabling a cross-correlation analysis that shows evidence for an optical lag of $\sim$25-55 minutes, the first time-lagged correlation between these bands reported on such short timescales. Limits on the Doppler factor ($\delta \gtrsim 33$) and the size of the emission region ($ \delta^{-1}R_B \lesssim 3.8\times 10^{13}\,\,\mbox{cm}$) are obtained from the fast variability observed by VERITAS during the main flare. Analysis of 10-minute-binned VHE and X-ray data over the decline epochs shows an extraordinary range of behavior in the flux-flux relationship: from linear to quadratic to lack of correlation to anti-correlation. Taken together, these detailed observations of an unprecedented flare seen in Mrk 421 are difficult to explain by the classic single-zone synchrotron self-Compton model.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    6
    References
    8
    Citations
    NaN
    KQI
    []