Phase locking technology for Raman laser system based on 1560 nm external cavity lasers

2021 
The technology of generating Raman laser is not only an important research content in the field of quantum precision measurement, but also a core technology of quantum inertial sensors such as cold atom gravimeter, gyroscope. For 87Rb atoms, two 780-nm lasers with a frequency difference of 6.834 GHz and a stable phase are needed to generate Raman light. Raman lasers can be generated by optical phase-locked loops of two 780-nm narrow linewidth external cavity tunable semiconductor lasers (ECDL). But the system thus developed is complicated in structure and very poor in environmental adaptability. The other method to generate Raman laser is based on intracavity 1560-nm laser with frequency doubling and electro-optic modulation technology. This system is simple in structure and strong in environmental adaptability, but it will introduce sideband effects and cannot achieve phase lock due to the limit by the linewidth and feedback bandwidth performance of the laser. In view of this, based on two new 1560-nm external cavity lasers and a home-made phase-locked circuit, in this paper the phase lock of the laser is achieved, and a Raman laser with low phase noise is obtained. The phase noise of beat note signal is as low as –95 dBc/Hz at the Fourier frequency in a range from 1 kHz to 10 kHz. A comparison of this system with the phase-locked performance of the 780-nm dual laser and the hybrid dual laser shows that this scheme has a slight advantage. In addition, the effect of the phase-locking performance on the phase noise of the cold atom interferometer through the method of piecewise integration is analyzed in this work. The experimental results given in this work provide a scheme for developing a miniaturized Raman optical system suitable for external fields.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    0
    Citations
    NaN
    KQI
    []