Construction of oxime esters derivatives of osthole from Cnidium monnieri, and evaluation of their agricultural activities and control efficiency.

2020 
BACKGROUND In order to discover natural-product-based pesticidal candidates, a series of coumarin-like derivatives containing oxime ester fragments at the C-8 position were prepared by structural modification of osthole, a natural plant product isolated from Cnidium monnieri. Their pesticidal activities were evaluated against two typically fruit trees/crop-threatening agricultural pests, Mythimna separata Walker and Tetranychus cinnabarinus Boisduval. RESULTS Osthole was regioselectively oxidized by selenium dioxide to give the E-isomer, (2'E)-3'-formaldehydylosthole (2). Four key steric structures of 2, (2'E, 4'E)-(o-chloropyrid-3-ylcarbonyl)oximinylosthole (4o), (2'E, 4'E)-(styrylcarbonyl)oximinylosthole (4t), and (2'E, 4'E)-(acetyl)oximinylosthole (4w) were undoubtedly confirmed by X-ray crystallography. Against T. cinnabarinus, it is noteworthy that (2'E, 4'E)-(p-chlorophenylcarbonyl)oximinylosthole (4c) exhibited over three-fold more potent acaricidal activity of the precursor osthole, with especially good control efficiency observed in the glasshouse. Against M. separata, compounds 4c and (2'E, 4'E)-(p-nitrophenylcarbonyl)oximinylosthole (4f) showed the most pronounced growth inhibitory activity. The relationships between their structures and agricultural activities also were studied. CONCLUSION These results demonstrate that compound 4c could be further structurally modified as pesticidal agents. It will lay the foundation for future application of osthole derivatives as pesticides.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    29
    References
    4
    Citations
    NaN
    KQI
    []