Effects of Time-Varying Fluid on Dynamical Characteristics of Cantilever Beams: Numerical Simulations and Experimental Measurements

2020 
In order to obtain the effects of time-varying fluid on dynamical characteristics of cantilever beams, this paper gives a comprehensive study of cantilever beams vibrating in a fluid with variable depth. The mathematical model of the cantilever beams in time-varying fluid is derived by combining Euler–Bernoulli beam theory and velocity potential theory, and the influence of the time-varying fluid is discussed. Then, a two-way fluid-structure interaction (FSI) numerical simulation procedure is proposed to calculate the transient responses of the beam. The validity and accuracy are verified according to the comparison among theoretical analysis, numerical simulations, and experimental measurements. Results show that, besides the added mass effect, a damping-like term is also induced due to the motion of the fluid, which is proportional to the moving velocity of the fluid. Both the added mass and the added damping increase with the increment of the width of the beam. The surrounding fluid near the free end affects the beam more significantly. As a negative damping is caused while the fluid decreases, resulting in a much slower decay of the time responses. Therefore, the added damping should not be neglected in the analysis of the FSI problems with time-varying fluid.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    45
    References
    0
    Citations
    NaN
    KQI
    []