The Roles of the Unique Prolyl Isomerase Pin1 in Cancer-Related Viral and Bacterial Infections

2016 
Infection is the process of pathogen invasion, as well as the host reaction to the foreign agents. Proline-directed phosphorylation is a major regulatory mechanism that regulates the function of fundamental proteins involved in infection and infection-induced cancer. Recently, the identification of the phosphorylation-dependent prolyl isomerase Pin1 has uncovered a unique regulatory signaling mechanism controlling protein conformation and function after phosphorylation. Pin1 is the only proline isomerase that specifically recognizes certain Pro-directed Ser/Thr phosphorylation motifs. Pin1 has emerged as a major regulator of cancerrelated viral and bacterial infections notably via activating Toll-like receptor signaling and NF-κB pathways. This paper will specifically review recent findings on the role of Pin1 in cancer-related viral and bacterial infections and also discuss newly discovered Pin1 inhibitors as promising drugs for the prevention and treatment of viral and bacterial infections and associated tumorigenesis.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    4
    Citations
    NaN
    KQI
    []