A simple bioluminescence procedure for early warning detection of coliform bacteria in drinking water

2008 
Traditional cultivation-dependent tests for coliform bacteria in food and drinking water take 18–24 h to complete. Bioluminescence-based enzyme assays can potentially reduce analysis time for indicator bacteria such as coliforms. In the present study, we developed a simple presence/absence (P/A) bioluminescence procedure for rapid detection of coliform bacteria in groundwater-based drinking water. The bioluminescence procedure targeting β-d-galactosidase activity in coliform bacteria was based on hydrolysis of 6-O-β-galactopyranosyl-luciferin. Bacteria immobilized on membrane filters were enriched for 6–8 h in selective media containing isopropyl-β-d-thiogalactopyranoside (IPTG) to induce β-d-galactosidase activity in coliform bacteria. The equivalent of approximately 300 E. coli cells was required for bioluminescence detection of β-d-galactosidase activity. In comparison, PCR based detection of E. coli in drinking water required approximately 30 target cells. Analysis of contaminated drinking water samples showed comparable results for coliform bacteria using traditional multiple-tube fermentation, Colilert-18, and the bioluminescence procedure. Aeromonas hydrophila or indigenous groundwater bacteria did not interfere with the procedure. The bioluminescence procedure can be combined with commercial substrates such as Fluorocult or Colilert-18, and will allow the detection of one coliform in 100 ml drinking water within one working day. The results suggest the bioluminescence assays targeting β-d-galactosidase activity may be used for or for early warning screening of drinking water and/or rapid identification of contaminated drinking water wells.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    18
    References
    10
    Citations
    NaN
    KQI
    []