SERS-Microfluidic Approach for the Quantitative Detection of miRNA Using DNAzyme-Mediated Reciprocal Signal Amplification

2021 
MicroRNAs (miRNAs) play important roles in biological processes. Designing a sensitive, selective, and rapid method of miRNA detection is crucial for biological research. Here, with a reciprocal signal amplification (RSA) probe, this work established a novel surface-enhanced Raman scattering (SERS)-microfluidic approach for the quantitative analysis of miRNA. First, via a DNAzyme self-assemble cycle reaction, two types of SERS signals produce amplified reciprocal changes. The sum of the absolute signal value is first adopted for the quantitative analysis of miRNA, which results in an enhanced response and a reduced blank value. Furthermore, the assay is integrated in an electric drive microfluidic mixing reactor that enables physical mixing and enriching of the reactants for more rapid and enhanced detection sensitivity. The protocol owns the merits of the SERS technology, amplified reciprocal signals, and a microfluidic chip, with a detection limit of 2.92 fM for miR-141 in 40 min. In addition, successful determination of miRNA in a variety of cells proved the practicability of the assay. Compared with the reported strategies for miRNA analysis, this work avoids a complex and time-consuming procedure and enhances the sensitivity and specificity. The method opens a promising way for biomolecular chip detection and research.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    31
    References
    4
    Citations
    NaN
    KQI
    []