Translation matrix elements for spherical Gauss–Laguerre basis functions

2019 
Spherical Gauss–Laguerre (SGL) basis functions, i.e., normalized functions of the type \(L_{n-l-1}^{(l + 1/2)}(r^2) r^{l} Y_{lm}(\vartheta ,\varphi ), |m| \le l < n \in {\mathbb {N}}\), constitute an orthonormal polynomial basis of the space \(L^{2}\) on \({\mathbb {R}}^{3}\) with radial Gaussian weight \(\exp (-r^{2})\). We have recently described reliable fast Fourier transforms for the SGL basis functions. The main application of the SGL basis functions and our fast algorithms is in solving certain three-dimensional rigid matching problems, where the center is prioritized over the periphery. For this purpose, so-called SGL translation matrix elements are required, which describe the spectral behavior of the SGL basis functions under translations. In this paper, we derive a closed-form expression of these translation matrix elements, allowing for a direct computation of these quantities in practice.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    11
    References
    2
    Citations
    NaN
    KQI
    []