Magnon Crystallization in the Kagome Lattice Antiferromagnet.

2020 
We present numerical evidence for the crystallization of magnons below the saturation field at nonzero temperatures for the highly frustrated spin-half kagome Heisenberg antiferromagnet. This phenomenon can be traced back to the existence of independent localized magnons or, equivalently, flatband multimagnon states. We present a loop-gas description of these localized magnons and a phase diagram of this transition, thus providing information for which magnetic fields and temperatures magnon crystallization can be observed experimentally. The emergence of a finite-temperature continuous transition to a magnon crystal is expected to be generic for spin models in dimension D>1 where flatband multimagnon ground states break translational symmetry.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    63
    References
    0
    Citations
    NaN
    KQI
    []