Iterative Normalized Cross-correlation Method for Absolute OPDs Demodulation of Dual Interferometers

2021 
It is still a challenge to realize the absolute optical path difference (OPD) demodulation of multi-interference systems with a narrow spectral interval and small OPD interval. In this paper, an iterative normalized cross-correlation algorithm is firstly proposed for demodulating the multiple absolute OPDs of a dual-interference system and applied to optical fiber sensing system. By constructing a template function in combined form, the optimal solutions of its components and OPDs are solved iteratively based on the reconstruction matrix method and cross-correlation algorithm, respectively. The simulation and experiment show that the demodulation accuracies near the OPDs of 560 µm and 660 µm are both up to 5 nm in different spectral intervals from 45 to 80 nm. The simulation results show that all demodulation precisions at the spectral interval of 55 nm do not exceed 4 nm when the OPD changes in the range of 650-670 µm. Besides, the experimental verification shows the temperature accuracy (0.125 °C) with 95% confidence of T-distribution is very close to the control accuracy (0.1 °C). The proposed algorithm can improve the multiplexing capability of optical fiber sensor system and reduce its cost.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    20
    References
    0
    Citations
    NaN
    KQI
    []