The Tambora eruption in 1815 provides a test on possible global climatic and chemical perturbations in the past

1992 
A coupled one-dimensional radiative-convective-photochemical diffusion model, which takes into account the influence of ocean inertia on global radiative perturbations is used to investigate the possible climatic and other atmospheric effects of a major volcanic eruption, thought to be similar in magnitude to that of the Tambora eruption, Indonesia, which took place in 1815. A volcanic cloud was introduced in the model stratosphere between 20–25 km and the global average peak aerosol optical thickness was assumed to be 0.25. Both the aerosol optical thickness and aerosol composition, which determine the optical properties, were allowed to vary in the model atmosphere during the life cycle of the volcanic cloud. The results indicate that the global average surface temperature decreases steadily from the date of eruption (7–12 April 1815) with maximum cooling of 1° K occurring in the spring of 1816. The calculations also show significant warming of the stratosphere, with temperature increasing up to 15° K at 25 km in less than six months after the date of eruption. The important effects of the Tambora eruption on stratospheric ozone and UV-B radiation at the surface are also mentioned.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    27
    References
    16
    Citations
    NaN
    KQI
    []