Mechanism of action of dexniguldipine-HCl (B8509−035), a new potent modulator of multidrug resistance

1995 
Abstract It has previously been shown that dexniguldipine-HCl (B8509-035) is a potent chemosensitizer in multidrug resistant cells [Hofmann et al., J Cancer Res Clin Oncol 118 : 361–366, 1992]. It is shown here that dexniguldipine-HCl causes a dose-dependent reduction of the labeling of the P-glycoprotein by azidopine, indicating a competition of dexniguldipine-HCl with the photoaffinity label for the multidrug resistance gene 1 (MDR-1) product. Exposure to dexniguldipine-HCl results in a dose-dependent accumulation of rhodamine 123 in MDR-1 overexpressing cells. In the presence of 1 μM dexniguldipine-HCl, rhodamine 123 accumulated in multidrug resistant cells to similar levels as in the sensitive parental cell lines. At this concentration, dexniguldipine-HCl enhances the cytotoxicities of Adriamycin ® and vincristine. The resistance modulating factors (RMF), i.e. ic 50 drug/ ic 50 drug + modulator, were found to be proportional to the expression of MDR-1, ranging from 8 to 42 for Adriamycin and from 16 to 63 for vincristine. Transfection with the MDR-1 gene was found to be sufficient to sensitize cells to the modulation by dexniguldipine-HCl. The compound does not affect the expression of the MDR-1 gene. Dexniguldipine-HCl has no effect on a multidrug resistant phenotype caused by a mutation of topoisomerase II. It is concluded that dexniguldipine-HCl modulates multidrug resistance by direct interaction with the P-glycoprotein.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    30
    References
    34
    Citations
    NaN
    KQI
    []