Cell-Autonomous Cytokinin-Independent Growth of Tobacco Cells Transformed by Agrobacterium tumefaciens Strains Lacking the Cytokinin Biosynthesis Gene

1994 
Mutations at the cytokinin biosynthesis locus (tmr) of Agrobacterium tumefaciens usually result in strains that induce tumors exhibiting the rooty phenotype associated with high auxin-to-cytokinin ratios. However, tobacco (Nicotiana tabacum cv Havana 425) leaf disc explants responded to tmr- mutant strain A356 by producing rapidly growing, unorganized tumors, indicating that these lines can grow in a cytokinin-independent fashion despite the absence of a functional tmr gene. Several methods have been used to characterize the physiological and cellular basis of this phenotype. The results indicate that tmr- tumors have a physiologically distinct mechanism for cytokinin-independent growth in comparison to tumors induced by wild-type bacteria. The cytokinin-independent phenotype of the tmr- transformants appears to be cell autonomous in nature: only the transformed cells and their progeny were capable of cytokinin-independent growth. Specifically, the tmr- tumors did not accumulate cytokinin, and clonal analysis indicated the tmr--transformed cells were not capable of stimulating the growth of neighboring nontransformed cells. Finally, the cytokinin-independent phenotype of the tmr- transformants was shown to be cold sensitive, whereas the wild-type tumors exhibited a cold-resistant cytokinin-independent phenotype. Potential mechanisms for this novel form of cytokinin-independent growth, including the role of the dehydrodiconiferyl alcohol glucosides found in both tumor types, are discussed.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    40
    References
    9
    Citations
    NaN
    KQI
    []