Proteasome inhibitor-induced apoptosis of B-chronic lymphocytic leukaemia cells involves cytochrome c release and caspase activation, accompanied by formation of an ∼700 kDa Apaf-1 containing apoptosome complex

2001 
Proteasome inhibitors, including lactacystin and MG132 (carbobenzoxyl-leucinyl-leucinyl-leucinal), potently induce apoptosis in leukaemic B cells from patients with B cell chronic lymphocytic leukaemia (B-CLL). This pro-apoptotic effect occurs in cells from patients at all stages of the disease, including those resistant to conventional chemotherapy, suggesting that proteasome inhibitors may be useful for treatment of B-CLL. Following initial inhibition of proteasomal activity, these agents induce mitochondrial cytochrome c release and caspase-dependent apoptosis, involving cleavage/activation of caspases -2, -3, -7, -8 and -9. Pre-treatment with the cell permeable caspase inhibitor, benzyloxycarbonyl-Val-Ala-Asp (OMe)fluoromethyl ketone (Z-VAD.fmk), did not prevent the release of cytochrome c or partial processing of caspase-9 but prevented activation of effector caspases and the induction of apoptosis. These results suggest that the release of cytochrome c is caspase independent and that caspase-9 is the initiator caspase in proteasome inhibitor-induced apoptosis of B-CLL cells. Activation of B-CLL lysates with dATP results in the formation of an ∼700 kDa caspase-activating apoptosome complex containing Apaf-1. We describe for the first time the formation of a similar ∼700 kDa caspase-activating apoptosome complex in B-CLL cells induced to undergo apoptosis by proteasome inhibitors.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    62
    References
    81
    Citations
    NaN
    KQI
    []