Vegetation carbon stocks driven by canopy density and forest age in subtropical forest ecosystems

2018 
Abstract Subtropical forests play an important role in global carbon cycle and in mitigating climate change. Knowledge on the abiotic and biotic driving factors that affect vegetation carbon stocks in subtropical forest ecosystems is needed to take full advantage of the carbon sequestration potential. We used a large-scale database from national forest continuous inventory in Zhejiang Province, and combined the Random Forest analysis (RF) and structural equation modeling (SEM) to quantify the contribution of biotic and abiotic driving factors on vegetation carbon stocks, and to evaluate the direct and indirect effects of the main driving factors. The RF model explained 50% of the variation in vegetation carbon stocks; canopy density accounted for 17.9%, and forest age accounted for 7.0%. Moreover, the SEM explained 52% of the variation in vegetation carbon stocks; the value of standardized total effects of canopy density and forest age were 0.469 and 0.327, respectively, suggesting that they were the most crucial driving factors of vegetation carbon stocks. Since the forests in our study were relatively young, the forests had a large potential for carbon sequestration. Overall, our study provided new insights into the sensitivity and potential response of subtropical forest ecosystems carbon cycle to climate change.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    67
    References
    28
    Citations
    NaN
    KQI
    []