On-demand generation and characterization of a microwave time-bin qubit

2020 
Superconducting circuits offer a scalable platform for the construction of large-scale quantum networks, where information can be encoded in multiple temporal modes of propagating microwaves. Characterization of such microwave signals with a method extendable to an arbitrary number of temporal modes with a single detector and demonstration of their phase-robust nature are of great interest. Here, we show the on-demand generation and Wigner tomography of a microwave time-bin qubit with superconducting circuit quantum electrodynamics architecture. We perform the tomography with a single heterodyne detector by dynamically switching the measurement quadrature independently for two temporal modes through the pump phase of a phase-sensitive amplifier. We demonstrate that the time-bin encoding scheme relies on the relative phase between the two modes and does not need a shared phase reference between sender and receiver.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    42
    References
    3
    Citations
    NaN
    KQI
    []