Scaling laws of density fluctuations at high-k on Tore Supra

2004 
Anomalous transport in tokamaks is generally attributed to turbulent fluctuations. Since a large variety of modes are potentially unstable, a wide range of short-scale fluctuations should be measured, with wavenumbers from kρi ~ 0.1 to kρi 1. In the Tore Supra tokamak, a light scattering experiment has made possible fluctuation measurements in the medium- and high-k domains where a transition in the k-spectrum is observed: the fluctuation level decreases much faster than usual observations, typically with a power law S(k) ≡ k−6. A scan of the ion Larmor radius shows that the transition wavenumber scales with ρi around kρi ~ 1.5. This transition indicates that a characteristic length scale should be involved to describe the fluctuation nonlinear dynamics in this range. The resulting very low level of fluctuations at high-k does not support a strong effect of turbulence driven by the electron temperature gradient. For this gyroradius scan, the characteristics of turbulence also exhibit a good matching with predictions from gyro-Bohm scaling: the typical scale length of turbulence scales with the ion Larmor radius, the typical timescales with a/cs; the turbulence level also scales with ρi, according to the mixing length rule.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    41
    References
    97
    Citations
    NaN
    KQI
    []