Orbital Design of Two-Dimensional Transition-Metal Peroxide Kagome Crystals with Anionogenic Dirac Half-Metallicity.

2021 
Assembling p orbital ferromagnetic half-metallicity and a topological element, such as a Dirac point at the Fermi level, in a single nanomaterial is of particular interest for long-distance, high-speed, and spin-coherent transportation in nanoscale spintronic devices. On the basis of the tight-binding model, we present an orbital design of a two-dimensional (2D) anionogenic Dirac half-metal (ADHM) by patterning cations with empty d orbitals and anions with partially filled p-type orbitals into a kagome lattice. Our first-principles calculations show that 2D transition-metal peroxides h-TM2(O2)3 (TMO3, TM = Ti, Zr, Hf), containing group IVB transition-metal cations [TM]4+ bridged with dioxygen anions [O2]8/3- in a kagome structure, are stable ADHMs with a Curie temperature over 103 K. The 2/3 filled π* orbitals of dioxygen anions are ferromagnetically coupled, leading to p orbital ferromagnetism and a half-metallic Dirac point right at the Fermi level with a Fermi velocity reaching 2.84 × 105 m/s. We proposed that 2D h-TM2(O2)3 crystals may be extracted from ABO3 bulk materials containing 2D TMO3 layers.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    43
    References
    0
    Citations
    NaN
    KQI
    []