Effects of Mg Content on Electric and Mechanical Properties of Al-Zn-Cu Based Alloys.

2021 
Microstructure and properties of Al-2 wt.%Zn-1 wt.%Cu-xMg (x = 0.1, 0.3, 0.5, 0.7 wt.%) alloy extrusion materials were investigated. The lattice constants for the (311) plane increased to 4.046858, 4.048483, 4.050114 and 4.051149 A with the addition of 0.1, 0.3, 0.5, and 0.7 wt.% of elemental Mg. The average grain size of the as-extruded Al alloys was found to be 328.7, 297.7, 187.0 and 159.3 μm for the alloys with 0.1, 0.3, 0.5, and 0.7 wt.% Mg content, respectively. The changes in the electrical conductivity by the addition of elemental Mg in Al-2 wt.%Zn-1 wt.%Cu alloy was determined, and it was found that for the addition of 0.1, 0.3, 0.5, and 0.7 wt.% Mg, the conductivity decreased to 51.62, 49.74, 48.26 and 46.80 %IACS. The ultimate tensile strength of Al-2 wt.%Zn-1 wt.%Cu-0.7 wt.%Mg alloy extrusion was increased to 203.55 MPa. Thus, this study demonstrated the correlation between the electrical conductivity and strength for the Al-2 wt.%Zn-1 wt.%Cu-xMg alloys.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    0
    Citations
    NaN
    KQI
    []