A 100-kiloparsec wind feeding the circumgalactic medium of a massive compact galaxy

2019 
Ninety per cent of baryons are located outside galaxies, either in the circumgalactic or intergalactic medium1,2. Theory points to galactic winds as the primary source of the enriched and massive circumgalactic medium3–6. Winds from compact starbursts have been observed to flow to distances somewhat greater than ten kiloparsecs7–10, but the circumgalactic medium typically extends beyond a hundred kiloparsecs3,4. Here we report optical integral field observations of the massive but compact galaxy SDSS J211824.06+001729.4. The oxygen [O ii] lines at wavelengths of 3726 and 3729 angstroms reveal an ionized outflow spanning 80 by 100 square kiloparsecs, depositing metal-enriched gas at 10,000 kelvin through an hourglass-shaped nebula that resembles an evacuated and limb-brightened bipolar bubble. We also observe neutral gas phases at temperatures of less than 10,000 kelvin reaching distances of 20 kiloparsecs and velocities of around 1,500 kilometres per second. This multi-phase outflow is probably driven by bursts of star formation, consistent with theory11,12. Theory predicts that winds expel baryons from galaxies into intergalactic space; now optical observations of the massive, but compact, galaxy SDSS J211824.06+001729.4 show that it is ejecting an enormous ionized outflow of gas.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    97
    References
    31
    Citations
    NaN
    KQI
    []