Interface-related magnetic and vibrational properties in Fe/MgO heterostructures from nuclear resonant spectroscopy and first-principles calculations

2020 
We combine ⁵⁷Fe Mossbauer spectroscopy and ⁵⁷Fe nuclear resonant inelastic x-ray scattering (NRIXS) on nanoscale polycrystalline [bcc−⁵⁷Fe/MgO] multilayers with various Fe-layer thicknesses and layer-resolved density-functional-theory (DFT)-based first-principles calculations of a (001)-oriented [Fe(8 ML)/MgO(8 ML)](001) heterostructure (where ML denotes monolayer) to unravel the interface-related atomic vibrational properties of a multilayer system. Being consistent in theory and experiment, we observe enhanced hyperfine magnetic fields B_(hf) in the multilayers as compared to B_(hf) in bulk bcc Fe; this effect is associated with the Fe/MgO interface layers. NRIXS and DFT both reveal a strong reduction of the longitudinal acoustic phonon peak in combination with an enhancement of the low-energy vibrational density of states (VDOS) suggesting that the presence of interfaces and the associated increase in the layer-resolved magnetic moments results in drastic changes in the Fe-partial VDOS. From the experimental and calculated VDOS, vibrational thermodynamic properties have been determined as a function of Fe thickness and were found to be in excellent agreement.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    87
    References
    1
    Citations
    NaN
    KQI
    []